ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 414]      



Задача 66530

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 61009

Темы:   [ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при нечетном m выражение  (x + y + z)mxm – ym – zm  делится на  (x + y + z)3x3y3z3.

Прислать комментарий     Решение

Задача 61095

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

Прислать комментарий     Решение

Задача 64762

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Прислать комментарий     Решение

Задача 65483

Тема:   [ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

Алгебраисты придумали новую операцию ❆, которая удовлетворяет условиям:  аа = 0  и  а ❆ (bc) = (ab) + c.  Вычислите  2015 ❆ 2014.  (Знак "+" определяет сложение в обычном смысле, скобки показывают порядок действий.)

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 414]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .