ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

Вниз   Решение


В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

ВверхВниз   Решение


В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр-названий этих городов, делится на 3. Можно ли добраться из города 1 в город 9?

ВверхВниз   Решение


Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.

ВверхВниз   Решение


Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

ВверхВниз   Решение


В равнобедренном треугольнике основание равно 48, а боковая сторона равна 30. Найдите радиусы описанной и вписанной окружностей и расстояние между их центрами.

ВверхВниз   Решение


Докажите, что сторона BC треугольника ABC видна из центра O вписанной окружности под углом 90o + $ \angle$A/2, а из центра O1 вневписанной окружности, касающейся стороны BC, - под углом 90o - $ \angle$A/2.

ВверхВниз   Решение


Найдите катеты прямоугольного треугольника, если известно, что радиус описанной около треугольника окружности равен R , а радиус вписанной в него окружности равен r . При каком отношении задача имеет решение?

ВверхВниз   Решение


Дано n точек,  n > 4.  Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении).

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 [Всего задач: 61]      



Задача 65359

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Условная вероятность ]
[ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 9,10,11

Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .