Страница:
<< 1 2 3
4 >> [Всего задач: 16]
|
|
Сложность: 5+ Классы: 9,10,11
|
а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на
окружности круглого острова. Их связывает плоская сеть дорог, на которых могут
быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются
дороги. На всех участках дорог введено одностороннее движение так, что, выехав
от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть fij означает число различных путей, идущих из порта i в порт j. Докажите неравенство f14f23 ≥ f13f24.
б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6
(по кругу в этом порядке), то
f16f25f34 +
f15f24f36 +
f14f26f35 ≥
f16f24f35 +
f15f26f34 +
f14f25f36.
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Рассматривается произвольный многоугольник (возможно, невыпуклый).
а) Всегда ли найдётся хорда этого многоугольника, которая делит
его площадь пополам?
б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.
в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).
|
|
Сложность: 5 Классы: 8,9,10
|
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых
клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
|
|
Сложность: 4- Классы: 10,11
|
Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см?
(Проволока может проходить по одному ребру дважды, загибаться на 90° и 180°, но ломать её нельзя.)
Страница:
<< 1 2 3
4 >> [Всего задач: 16]