ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 77875

Темы:   [ Свойства симметрии и центра симметрии ]
[ Композиция центральных симметрий ]
Сложность: 4+
Классы: 8,9

Может ли фигура иметь более одного, но конечное число центров симметрии?
Прислать комментарий     Решение


Задача 57848

Темы:   [ Свойства симметрии и центра симметрии ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии.
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии.
в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
Прислать комментарий     Решение


Задача 57858

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Композиция центральных симметрий ]
[ Построения (прочее) ]
[ Произвольные многоугольники ]
Сложность: 5+
Классы: 8,9

Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.
Прислать комментарий     Решение


Задача 98250

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 7,8,9

Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то  AB = BA1).  Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.
Прислать комментарий     Решение


Задача 98261

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Вспомогательная раскраска (прочее) ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 3+
Классы: 7,8,9

Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы     и     равны). Докажите, что три кузнечика не могут оказаться
  а) на одной прямой, параллельной стороне квадрата;
  б) на одной произвольной прямой.

 
Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .