ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



Задача 66490

Темы:   [ Задачи-шутки ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Прислать комментарий     Решение


Задача 66600

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
Прислать комментарий     Решение


Задача 60982

Темы:   [ Теорема Безу. Разложение на множители ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 8,9,10

При каких a многочлен  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)xa³  делится на  x – 1?

Прислать комментарий     Решение

Задача 61047

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

Прислать комментарий     Решение

Задача 61258

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Кубические многочлены ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Какими должны быть числа a и b, чтобы выполнялось равенство  x³ + px + q = x³ – a³ – b³ – 3abx?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .