Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 168]
|
|
Сложность: 4 Классы: 9,10,11
|
Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то
дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране 100 городов, между каждыми двумя городами осуществляется беспосадочный перелёт. Все рейсы платные и стоят положительное (возможно, нецелое) число тугриков. Для любой пары городов А и Б перелёт из А в Б стоит столько же, сколько перелёт из Б в А. Средняя стоимость перелёта равна 1 тугрику. Путешественник хочет облететь какие-нибудь m разных городов за m перелётов, начав и закончив в своём родном городе. Всегда ли ему удастся совершить такое путешествие, потратив на билеты не более m тугриков, если
а) m = 99;
б) m = 100?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных
участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В
итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а
остальные — по 20 тысяч?
В волейбольном турнире каждые две команды сыграли по одному матчу.
а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
б) Постройте пример такого турнира семи команд.
в) Докажите, что если для любых трёх команд найдётся такая, которая
выиграла у этих трёх, то число команд не меньше 15.
|
|
Сложность: 4 Классы: 7,8,9
|
Группа психологов разработала тест, пройдя который, каждый человек получает
оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на
противоположное – часть жителей В переехала в Б, а часть жителей Б – в А.
Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению
с теми, которые были после первого переезда, но до начала второго). (Так, во
всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?
(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 168]