ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Каждая диагональ выпуклого пятиугольника параллельна одной из
его сторон. Докажите, что аффинным преобразованием этот
пятиугольник можно перевести в правильный пятиугольник.
На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник. На сторонах AB, BC и CA треугольника ABC
взяты точки P, Q и R соответственно. Докажите, что центры
описанных окружностей треугольников APR, BPQ и CQR
образуют треугольник, подобный треугольнику ABC.
Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна. В данный треугольник поместите центрально симметричный
многоугольник наибольшей площади.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 94]
В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3.
В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через противоположные вершины A1 , C и середину ребра D1C1 . Найдите расстояние от вершины D1 до плоскости P , если ребро куба равно 6.
В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через точку D и середины рёбер A1D1 и C1D1 . Найдите расстояние от середины ребра AA1 до плоскости P , если ребро куба равно 2.
Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер a, b, c этого куба.
Составьте уравнение плоскости, проходящей через точку
M0(x0;y0;z0) перпендикулярно ненулевому
вектору
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 94]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке