Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 630]
Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.
|
|
|
Сложность: 4- Классы: 6,7,8,9
|
Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причём m и n не имеют общих делителей и m < n. Докажите, что с помощью компьютера из них можно получить
а) единицу;
б) любое целое число от 1 до n.
Во всех клетках таблицы 20×20 расставлены плюсы. Разрешается менять знак одновременно во всех клетках строки или столбца.
Можно ли, пользуясь этими операциями, получить ровно 199 минусов?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
х1 = а и х2 = b. Построим бесконечную последовательность натуральных чисел по правилу: xn = O(хn–1 + хn–2), где n = 3, 4, ... .
а) Докажите, что, начиная с некоторого места, все числа в последовательности будут равны одному и тому же числу.
б) Как найти это число, зная числа a и b?
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 630]