Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 187]
|
|
Сложность: 4- Классы: 10,11
|
Имеется бесконечное количество карточек, на каждой из которых написано какое-то
натуральное число. Известно, что для любого натурального числа n существуют
ровно n карточек, на которых написаны делители этого числа. Доказать, что
каждое натуральное число встречается хотя бы на одной карточке.
Докажите, что число 22n – 1 имеет по крайней мере n различных простых делителей.
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое?
б) Докажите, что если они оба целые, то a = b = c.
|
|
Сложность: 4 Классы: 9,10,11
|
Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
|
|
Сложность: 4 Классы: 8,9,10
|
Дано натуральное число n > 6. Рассматриваются натуральные числа, лежащие в промежутке (n(n – 1), n²) и взаимно простые с n(n – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 187]