ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 186]      



Задача 78742

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.

Прислать комментарий     Решение

Задача 102795

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа.

Прислать комментарий     Решение

Задача 102855

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Решите уравнение в целых числах  m² − n² = 2002.

Прислать комментарий     Решение

Задача 103889

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8

Чтобы открыть сейф, нужно ввести код  – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.

Прислать комментарий     Решение

Задача 104018

Темы:   [ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8

Дома у Олега есть сейф, но кода он не знает. Бабушка рассказала Олегу, что код состоит из 7 цифр – двоек и троек, причем двоек больше, чем троек. А дедушка – что код делится и на 3, и на 4. Сможет ли Олег с первой попытки открыть сейф?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 186]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .