Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 45]
|
|
Сложность: 3 Классы: 8,9,10
|
Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
|
|
Сложность: 3 Классы: 9,10,11
|
На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7.
Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится
ли число на 37, надо разбить его справа налево на группы по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.)
Шестизначное число делится на 37. Все его цифры различны. Доказать, что из
тех же цифр можно составить и другое шестизначное число, кратное 37.
[Делимость на 120]
|
|
Сложность: 3 Классы: 8,9
|
Доказать, что число n5 – 5n³ + 4n делится на 120 при любом натуральном n.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 45]