ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 694]      



Задача 77888

Темы:   [ Геометрическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 9

Имеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.
Прислать комментарий     Решение


Задача 78053

Темы:   [ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы.
Прислать комментарий     Решение


Задача 78272

Темы:   [ Рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.
Прислать комментарий     Решение


Задача 78506

Тема:   [ Рекуррентные соотношения ]
Сложность: 4
Классы: 9,10

Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.
Прислать комментарий     Решение

Задача 78568

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4
Классы: 8,9,10

Дана последовательность ..., a-n,..., a-1, a0, a1,..., an,... бесконечная в обе стороны, причём каждый её член равен $ {\frac{1}{4}}$ суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .