ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 694]      



Задача 79464

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 11

В некотором царстве, в некотором государстве было выпущено неограниченное количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ...  – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.

Прислать комментарий     Решение

Задача 79492

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Неравенство Коши ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10,11

Докажите, что если     при  n = 2, ..., 10,  то  

Прислать комментарий     Решение

Задача 98121

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 9,10

Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
  а) Докажите, что число её членов меньше 100.
  б) Приведите пример такой прогрессии с 72 членами.
  в) Докажите, что число членов всякой такой прогрессии не больше 72.

Прислать комментарий     Решение

Задача 98152

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Числовая последовательность определяется условиями:    
Докажите, что среди членов этой последовательности бесконечно много полных квадратов.  
Прислать комментарий     Решение


Задача 98159

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .