Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 694]
В некотором царстве, в некотором государстве было выпущено неограниченное
количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ... – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что если при n = 2, ..., 10, то
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.
|
|
Сложность: 4 Классы: 8,9,10
|
Числовая последовательность определяется условиями:
Докажите, что среди членов этой последовательности бесконечно много полных
квадратов.
|
|
Сложность: 4 Классы: 10,11
|
Числовая последовательность определяется условиями:
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 694]