Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 694]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых
не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
В последовательности 19752... каждая цифра, начиная с пятой, равна
последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой
последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?
|
|
Сложность: 4 Классы: 7,8,9
|
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
а) набор цифр 1234; 3269; б) вторично набор 1975; в) набор 8197?
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
|
|
Сложность: 4 Классы: 9,10,11
|
Считая известной формулу доказать, что для различных натуральных чисел a1, a2, ..., an справедливо неравенство Возможно ли равенство для каких-нибудь различных натуральных чисел a1, a2, ..., an?
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 694]