Страница:
<< 21 22 23 24 25
26 27 >> [Всего задач: 133]
|
|
Сложность: 4 Классы: 7,8,9
|
В классе 33 человека. У каждого ученика спросили, сколько
у него в классе тезок и сколько однофамильцев (включая родственников).
Оказалось, что среди названных чисел встретились все целые от 0 до 10
включительно. Докажите, что в классе есть два ученика с одинаковыми именем
и фамилией.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На кольцевом треке 2n велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее n² встреч.
|
|
Сложность: 4 Классы: 10,11
|
На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)
|
|
Сложность: 5+ Классы: 7,8,9
|
Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более
легкая). Он попросил эксперта определить эту монету с помощью чашечных весов
без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях
не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы
эксперт заведомо смог выделить фальшивую за
n взвешиваний?
|
|
Сложность: 3 Классы: 7,8,9
|
В волейбольном турнире команды играют друг с другом по одному матчу. За победу дается одно очко, за поражение – ноль. Известно, что в один из моментов турнира все команды имели разное количество очков. Сколько очков набрала в конце турнира предпоследняя команда, и как она сыграла с победителем?
Страница:
<< 21 22 23 24 25
26 27 >> [Всего задач: 133]