Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 200]      



Задача 115920

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Неравенство Коши ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что  

Прислать комментарий     Решение

Задача 65079

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4
Классы: 8,9

В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.

Прислать комментарий     Решение

Задача 65255

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Автор: Иванов К.

Действительные числа a, b, c, d, по модулю большие единицы, удовлетворяют соотношению   abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что  

Прислать комментарий     Решение

Задача 79492

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Неравенство Коши ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10,11

Докажите, что если     при  n = 2, ..., 10,  то  

Прислать комментарий     Решение

Задача 109867

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
[ Методы решения задач с параметром ]
Сложность: 4
Классы: 10,11

Рассматриваются такие квадратичные функции  f(x) = ax² + bx + c,  что  a < b  и  f(x) ≥ 0  для всех x.
Какое наименьшее значение может принимать выражение  a+b+c/b–a ?
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .