ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 263]      



Задача 116803

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что модули корней каждого из двух квадратных трёхчленов  x² + ax + b  и  x² + cx + d  меньше 10. Может ли трёхчлен    иметь корни, модули которых не меньше 10?

Прислать комментарий     Решение

Задача 116806

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

Прислать комментарий     Решение

Задача 116869

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10

Квадратный трёхчлен  ax² + 2bx + c  имеет два различных корня, а квадратный трёхчлен  a²x² + 2b²x + c²  корней не имеет.
Докажите, что у первого трёхчлена корни разного знака.

Прислать комментарий     Решение

Задача 116935

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

Прислать комментарий     Решение

Задача 116948

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 263]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .