Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 117]
|
|
Сложность: 4- Классы: 8,9,10
|
Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
а) x1 = 0, x2 = 1; б) x1 ≤ 0, x2 ≥ 2;
в) x1 = x2;
г) – 1 ≤ x1 ≤ 0, 1 ≤ x2 ≤ 2.
|
|
Сложность: 4- Классы: 9,10,11
|
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
a sin x + b cos x + c = 0, 2a tg x + b ctg x + 2c = 0
имеет решение.
|
|
Сложность: 4- Классы: 8,9,10
|
Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных
целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите наименьшее значение x² + y², если x2 – y² + 6x + 4y + 5 = 0.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 117]