Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 83]
Докажите, что в любом треугольнике большей стороне
соответствует меньшая биссектриса.
|
|
Сложность: 5- Классы: 9,10,11
|
В треугольнике
ABC на стороне
BC выбрана точка
M так, что
точка пересечения медиан треугольника
ABM лежит на описанной окружности треугольника
ACM , а
точка пересечения медиан треугольника
ACM лежит на описанной окружности треугольника
ABM .
Докажите, что медианы треугольников
ABM и
ACM из вершины
M равны.
|
|
Сложность: 5- Классы: 9,10,11
|
Вписанная окружность
σ треугольника
ABC касается его сторон
BC ,
AC ,
AB в точках
A' ,
B' ,
C' соответственно. Точки
K и
L на окружности
σ таковы, что
AKB'+ BKA'= ALB'+ BLA'=180
o . Докажите, что прямая
KL равноудалена от точек
A' ,
B' ,
C' .
Постройте четырехугольник по углам и диагоналям.
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Докажите, что радиусы описанных окружностей треугольников PKL, PLM, PMN и PNK равны.
Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 83]