ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83]      



Задача 61130

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Вычислите суммы:

  а)  1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1);

  б)  a sin φ + ... + ak sin kφ + ... ( |a| < 1);

  в)  

  г)  

Прислать комментарий     Решение

Задача 64668

Темы:   [ Многочлены (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 10,11

Существует ли такой многочлен  f(x) степени 6, что для любого x выполнено равенство  f(sinx) + f(cosx) = 1?

Прислать комментарий     Решение

Задача 65920

Темы:   [ Тетраэдр (прочее) ]
[ Теоремы синусов и косинусов для трехгранных углов ]
[ Тождественные преобразования (тригонометрия) ]
[ Перпендикулярные плоскости ]
[ Развертка помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой  CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.

Прислать комментарий     Решение

Задача 57047

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема Птолемея ]
[ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 5+
Классы: 9,10,11

Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.
Прислать комментарий     Решение


Задача 55721

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что  AK = DM + BK.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .