Страница:
<< 187 188 189 190
191 192 193 >> [Всего задач: 1006]
|
|
Сложность: 4- Классы: 8,9,10
|
Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге.
Докажите, что можно составить парламентскую комиссию из 665 человек, члены
которой не выясняли отношений между собой указанным выше способом.
|
|
Сложность: 4- Классы: 7,8,9
|
Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)
В компании из семи человек любые шесть могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.
Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет.
Докажите, что либо есть четыре вершины, все рёбра между которыми – синие, либо есть три вершины, все рёбра между которыми – красные.
Страница:
<< 187 188 189 190
191 192 193 >> [Всего задач: 1006]