ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 383]      



Задача 79293

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Степень вершины ]
Сложность: 3+
Классы: 7,8,9

На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.

Прислать комментарий     Решение

Задача 79450

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.

Прислать комментарий     Решение

Задача 79614

Темы:   [ Задачи с ограничениями ]
[ Числовые таблицы и их свойства ]
[ Обход графов ]
Сложность: 3+
Классы: 9

В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?

Прислать комментарий     Решение

Задача 98469

Темы:   [ Призма (прочее) ]
[ Раскраски ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
  а) Докажите, что если n делится на 3, то такая раскраска возможна.
  б) Докажите, что если если такая раскраска возможна, то n делится на 3.

Прислать комментарий     Решение

Задача 116993

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .