ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 383]
Дан отрезок OA. Из конца отрезка A выходит 5 отрезков AB1, AB2, AB3, AB4, AB5. Из каждой точки Bi могут выходить ещё пять новых отрезков или ни одного нового отрезка и т.д. Может ли число свободных концов построенных отрезков равняться 1001? Под свободным концом отрезка понимаем точку, принадлежащую только одному отрезку (кроме точки O).
n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)
Как соединить 50 городов наименьшим числом авиалиний так, чтобы из каждого города можно было попасть в любой, сделав не более двух пересадок?
В компании из семи мальчиков каждый имеет среди остальных не менее трёх братьев. Докажите, что все семеро – братья.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|