Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 278]
На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?
|
|
Сложность: 3 Классы: 7,8,9
|
Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?
На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?
В одной куче 18 конфет, а в другой – 23. Двое играют в игру: одним ходом можно съесть одну кучу конфет, а другую разделить на две кучи. Проигравшим считается тот, кто не может сделать ход, то есть перед ходом которого имеются две кучи из одной конфеты. Кто выиграет при правильной игре?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Двое играют в двойные шахматы: все фигуры ходят как обычно,
но каждый делает по два шахматных хода подряд. Докажите, что
первый может как минимум сделать ничью.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 278]