Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 160]
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.
|
|
|
Сложность: 3+ Классы: 9,10
|
Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?
|
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:
Могло ли такое быть?
|
|
|
Сложность: 3+ Классы: 5,6,7
|
Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?
|
|
|
Сложность: 3+ Классы: 5,6,7,8,9
|
У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие.
Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец
может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 160]