ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 411]      



Задача 98651

Темы:   [ Индукция (прочее) ]
[ Раскладки и разбиения ]
[ Перебор случаев ]
[ Деление с остатком ]
Сложность: 3-
Классы: 6,7,8

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

Прислать комментарий     Решение

Задача 35235

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Найдите все натуральные n, для которых  2nn².

Прислать комментарий     Решение

Задача 60277

Тема:   [ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10

Аксиома индукции. Если известно, что некоторое утверждение верно для 1, и из предположения, что утверждение верно для некоторого n, вытекает его справедливость для n+1, то это утверждение верно для всех натуральных чисел.
Докажите, что аксиома индукции равносильна любому из следующих утверждений:
1) всякое непустое подмножество натуральных чисел содержит наименьшее число;
2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число;
3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа;
4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a $ \leqslant$ k < n вытекает его справедливость для n, то это утверждение верно для всех натуральных чисел k $ \geqslant$ a;
5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел.

Прислать комментарий     Решение

Задача 60279

Темы:   [ Индукция (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Прислать комментарий     Решение

Задача 60313

Темы:   [ Индукция (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Вычислите произведение  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .