ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 290]      



Задача 35449

Темы:   [ Разные задачи на разрезания ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 9,10

От пирога, имеющего форму выпуклого многоугольника, разрешается отрезать треугольный кусок ABC, где A - некоторая вершина, а B и C - точки, лежащие строго внутри сторон, имеющих вершину A. Вначале пирог имеет форму квадрата. В центре этого квадрата расположена изюминка. Докажите, что ни на каком шаге от пирога нельзя отрезать кусок, содержащий изюминку.
Прислать комментарий     Решение


Задача 30756

Темы:   [ Таблицы и турниры (прочее) ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 32898

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?

Прислать комментарий     Решение

Задача 35134

Темы:   [ НОД и НОК. Взаимная простота ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9

В строку выписано m натуральных чисел. За один ход можно прибавить по единице к некоторым n из этих чисел.
Всегда ли можно сделать все числа равными?

Прислать комментарий     Решение

Задача 35739

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты и полуинварианты ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Имеется два стакана, в первом стакане налито некоторое количество воды, а во втором – такое же количество спирта. Разрешается переливать некоторое количество жидкости из одного стакана в другой (при этом раствор равномерно перемешивается). Можно ли с помощью таких операций получить в первом стакане раствор, в котором процентное содержание спирта больше, чем во втором?

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .