Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 290]
|
|
|
Сложность: 3+ Классы: 7,8,9
|
На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа?
На экране компьютера – число 12. Каждую секунду число на экране умножают или делят либо на 2, либо на 3. Результат действия возникает на экране вместо записанного числа. Ровно через минуту на экране появилось число. Могло ли это быть число 54?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
В одной из вершин шестиугольника лежит золотая монета, а в остальных ничего не лежит. Кощей Бессмертный чахнет над златом и каждое утро снимает с одной вершины произвольное количество монет, после чего тут же кладёт на соседнюю вершину в шесть раз больше монет. Если к исходу какого-то дня во всех вершинах будет поровну монет, Кощей станет Властелином Мира. Докажите, что хоть злата у него сколько угодно, но Властелином Мира ему не бывать.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.
а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа?
б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа?
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 290]