ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 290]      



Задача 66990

Темы:   [ Системы линейных уравнений ]
[ Инварианты и полуинварианты (прочее) ]
Сложность: 3+
Классы: 6,7,8

Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?
Прислать комментарий     Решение


Задача 105126

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 7,8,9

Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
Прислать комментарий     Решение


Задача 35369

Темы:   [ Свойства симметрий и осей симметрии ]
[ Инварианты ]
[ Свойства частей, полученных при разрезаниях ]
[ Многоугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9,10,11

С многоугольником разрешено проделывать следующую операцию. Если многоугольник делится отрезком AB на на два многоугольника, то один из этих многоугольников можно отразить симметрично относительно серединного перпендикуляра к отрезку AB. (Операция разрешается только в том случае, когда в результате получается несамопересекающийся многоугольник.) Можно ли путем нескольких таким операций получить из квадрата правильный треугольник?
Прислать комментарий     Решение


Задача 64538

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Саша начертил квадрат размером 6×6 клеток и поочередно закрашивает в нём по одной клетке. Закрасив очередную клетку, он записывает в ней число – количество закрашенных клеток, соседних с ней. Закрасив весь квадрат, Саша складывает числа, записанные во всех клетках. Докажите, что в каком бы порядке Саша ни красил клетки, у него в итоге получится одна и та же сумма. (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение

Задача 64965

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

На экране компьютера сгенерирована некоторая конечная последовательность нулей и единиц. С ней можно производить следующую операцию: набор цифр "01" заменять на набор цифр "1000". Может ли такой процесс замен продолжаться бесконечно или когда-нибудь он обязательно прекратится?

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .