ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 66558

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Индукция (прочее) ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10

Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?
Прислать комментарий     Решение


Задача 66579

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?
Прислать комментарий     Решение


Задача 66712

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Прислать комментарий     Решение


Задача 66762

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 6,7,8

Петя написал стозначное число $X$, в записи которого нет нулей. Пятидесятизначное число, образованное первыми пятьюдесятью цифрами числа $X$, Петя назвал головой числа $X$. Оказалось, что число $X$ без остатка делится на свою голову. Сколько нулей в записи частного?
Прислать комментарий     Решение


Задача 66851

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .