|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 490]
Докажите, что внутри выпуклого многоугольника можно поместить его образ при гомотетии с коэффициентом – ½.
Докажите, что числа Hn = 1 + 1/2 + 1/3 + ... + 1/n при n > 1 не будут целыми.
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?
По кругу стоят 101000 натуральных чисел. Между каждыми двумя соседними числами записали их наименьшее общее кратное.
Дано n палочек. Из любых трёх можно сложить тупоугольный треугольник. Каково наибольшее возможное значение n?
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 490] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|