|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных. |
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 490]
Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
На доске нарисован правильный многоугольник. Володя хочет отметить k точек на его периметре так, чтобы не существовало другого правильного многоугольника (не обязательно с тем же числом сторон), также содержащего отмеченные точки на своем периметре.
В координатном пространстве провели все плоскости с уравнениями x ± y ± z = n (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка (x0, y0, z0) с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка (kx0, ky0, kz0) лежит строго внутри некоторого октаэдра разбиения.
На бесконечной во все стороны шахматной доске выделено некоторое множество
клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 490] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|