ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



Задача 65560

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.

Прислать комментарий     Решение

Задача 66271

Темы:   [ Теория игр (прочее) ]
[ Многоугольники (прочее) ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Белухов Н.

Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму s и называет 97 троек  {i, j, k},  где i, j, k – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник A1A2...A100 с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников AiAjAk. При каком наибольшем s Человеку выгодно согласиться?

Прислать комментарий     Решение

Задача 78168

Темы:   [ Теория игр (прочее) ]
[ Обратный ход ]
[ Перебор случаев ]
Сложность: 4+
Классы: 10,11

На n карточках написаны с разных сторон числа — на 1-й: 0 и 1; на 2-й: 1 и 2; ...; на n-й: n - 1 и n. Один человек берёт из стопки несколько карточек и показывает второму одну сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже показывает одну сторону. Указать все случаи, в которых второй может определить число, написанное на обороте последней показанной ему карточки.
Прислать комментарий     Решение


Задача 78747

Темы:   [ Теория игр (прочее) ]
[ Задачи на движение ]
Сложность: 4+
Классы: 8

В парке шесть узких аллей одинаковой длины, четыре из которых идут по сторонам квадрата и две по его средним линиям. По этим аллеям мальчик Коля убегает от папы и мамы. Смогут ли папа и мама поймать Колю, если он бегает втрое быстрее их (все трое всё время видят друг друга)?

Прислать комментарий     Решение

Задача 78751

Темы:   [ Теория игр (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Задачи на движение ]
Сложность: 4+
Классы: 9

В маленьком зоопарке из клетки убежала обезьяна. Её ловят два сторожа. И сторожа, и обезьяна бегают только по дорожкам. Всего в зоопарке шесть прямолинейных дорожек: три длинные образуют правильный треугольник, три короткие соединяют середины его сторон. В каждый момент времени обезьяна и сторожа видят друг друга. Смогут ли сторожа поймать обезьяну, если обезьяна бегает в 3 раза быстрее сторожей? (Вначале оба сторожа находятся в одной вершине треугольника, а обезьяна в другой.)

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .