ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 420]      



Задача 60863

Темы:   [ Рациональные и иррациональные числа ]
[ Квадратные корни (прочее) ]
Сложность: 7
Классы: 10,11

Докажите, что число $ \sqrt{2}$ + $ \sqrt{3}$ + $ \sqrt{5}$ + $ \sqrt{7}$ + $ \sqrt{11}$ + $ \sqrt{13}$ + $ \sqrt{17}$ иррационально.

Прислать комментарий     Решение

Задача 60552

Темы:   [ Делимость чисел. Общие свойства ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 7,8,9

Докажите, что для действительного положительного α и натурального d всегда выполнено равенство  [α/d] = [[α]/d].

Прислать комментарий     Решение

Задача 104104

Темы:   [ Квадратный трехчлен (прочее) ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 2+
Классы: 7,8,9

Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

Прислать комментарий     Решение

Задача 61215

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 9,10,11

Докажите, что функция cos$ \sqrt{x}$ не является периодической.

Прислать комментарий     Решение

Задача 61216

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 9,10

При каких целых значениях n функция

y = cos nx . sin$\displaystyle {\dfrac{5}{n}}$x

имеет период 3$ \pi$?

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .