ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 829]      



Задача 53910

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

Прислать комментарий     Решение

Задача 54043

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Прямая, проведённая через вершину C треугольника ABC параллельно его биссектрисе BD, пересекает продолжение стороны AB в точке M.
Найдите углы треугольника MBC, если  ∠ABC = 110°.

Прислать комментарий     Решение

Задача 54765

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)

Прислать комментарий     Решение

Задача 78475

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

Прислать комментарий     Решение

Задача 102704

Темы:   [ Метод координат на плоскости ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Даны точки  A(–1, 5)  и  B(3, –7).  Найдите расстояние от начала координат до середины отрезка AB.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .