Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 830]
Дан угол с вершиной A. От точки A отложен на стороне отрезок AB; из точки B проведена прямая, параллельная второй стороне данного
угла; на этой прямой отложен внутри угла отрезок BD, равный BA.
Докажите, что прямая AD делит данный угол пополам.
Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.
Прямая, проведённая через вершину C треугольника ABC параллельно его биссектрисе BD, пересекает продолжение стороны AB в точке M.
Найдите углы треугольника MBC, если ∠ABC = 110°.
Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)
На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать,
что найдутся две из них, угол между которыми меньше 26°.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 830]