ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 829]      



Задача 54898

Темы:   [ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радикальная ось ]
Сложность: 4-
Классы: 8,9

На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
Докажите, что прямые, содержащие три общие хорды каждой пары этих окружностей пересекаются в одной точке.

Прислать комментарий     Решение

Задача 56855

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Задача 57169

 [Теорема Карно]
Темы:   [ Теорема Карно ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 9

Докажите, что перпендикуляры, опущенные из точек A1, B1, C1 на стороны BC, CA, AB треугольника ABC, пересекаются в одной точке тогда и только тогда, когда A1B² + C1A² + B1C² = B1A² + A1C² + C1B² (теорема Карно).

Прислать комментарий     Решение

Задача 58165

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 4-
Классы: 7,8

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.

Прислать комментарий     Решение

Задача 64457

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .