Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 831]      



Задача 86482

 [Караван верблюдов]
Темы:   [ Задачи на движение ]
[ Геометрические интерпретации в алгебре ]
[ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 7,8

По пустыне равномерно движется караван верблюдов длиной в 1 км. Всадник проехал от конца каравана к началу и вернулся к концу каравана. За это время караван прошел 1 км. Какой путь проехал всадник, если скорость его была постоянной?

Прислать комментарий     Решение

Задача 116670

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что  XY = YZ  и  AY = BZ.  Докажите, что прямые XZ и BC перпендикулярны.

Прислать комментарий     Решение

Задача 52420

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Точка Торричелли ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54455

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 64624

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9,10

Автор: Жуков Г.

Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?

Прислать комментарий     Решение

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .