ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 5264]      



Задача 54719

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = $ \alpha$, $ \angle$C = $ \beta$, AB = a; AD - биссектриса. Найдите BD.

Прислать комментарий     Решение


Задача 54911

Темы:   [ Теорема синусов ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Диагональ параллелограмма делит его угол на части в 30o и 45o. Найдите отношение сторон параллелограмма.

Прислать комментарий     Решение


Задача 55257

Темы:   [ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
Сложность: 3-
Классы: 8,9

Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

Прислать комментарий     Решение


Задача 55262

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.
Прислать комментарий     Решение


Задача 55718

Темы:   [ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3-
Классы: 8,9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 5264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .