Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 5292]      



Задача 108922

Тема:   [ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведена биссектриса BL. Известно, что  BL = AB.  На продолжении BL за точку L выбрана точка K, причём  ∠BAK + ∠BAL = 180°.  Докажите, что  BK = BC.

Прислать комментарий     Решение

Задача 108936

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Докажите, что углы DFE и CFE равны.

Прислать комментарий     Решение

Задача 108941

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Пусть вневписанные окружности треугольника, касающиеся сторон AC и BC , касаются прямой AB в точках P и Q соответственно. Докажите, что середина стороны AB совпадает с серединой отрезка PQ .
Прислать комментарий     Решение


Задача 108954

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .
Прислать комментарий     Решение


Задача 109006

Тема:   [ Теорема косинусов ]
Сложность: 3
Классы: 8,9,10

Стороны треугольника a,b и c . A=60o . Доказать, что

3/(a+b+c)=1/(a+b)+1/(a+c).

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 5292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .