ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 5266]      



Задача 111703

Темы:   [ Вспомогательные подобные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Задача 115333

Тема:   [ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Большой треугольник разбит тремя жирными отрезками на четыре треугольника и три четырёхугольника. Сумма периметров четырёхугольников равна 25 см. Сумма периметров четырёх треугольников равна 20 см. Периметр исходного большого треугольника равен 19 см. Найдите сумму длин жирных отрезков.

Прислать комментарий     Решение

Задача 115334

Тема:   [ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

На стороне AC треугольника ABC нашлись такие точки K и L, что L – середина AK и BK – биссектриса угла LBC. Оказалось, что  BC = 2BL.
Докажите, что  KC = AB.

Прислать комментарий     Решение

Задача 115335

Темы:   [ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

На продолжении стороны AD вписанного четырёхугольника ABCD за точку D отмечена такая точка E, что  AC = CE и  ∠BDC = ∠DEC.
Докажите, что  AB = DE.

Прислать комментарий     Решение

Задача 115568

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

Радиус окружности с центром O равен 2 . В сектор AOB с углом 45o , вписан прямоугольник KLMN . Сторона KL расположена на отрезке OA , вершина M — на дуге AB , а вершина N — на отрезке OB . Найдите стороны прямоугольника, если одна из них вдвое больше другой. радиус.
Прислать комментарий     Решение


Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 5266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .