Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 239]
На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём ∠KCB = ∠
LAB = α. Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
Стороны BC = a, AC = b, AB = c треугольника ABC образуют арифметическую прогрессию, причём a < b < c. Биссектриса угла B пересекает описанную окружность в точке B1. Докажите, что центр O вписанной окружности делит отрезок BB1 пополам.
Точки P и Q – середины оснований AD и BC
трапеции ABCD соответственно. Оказалось, что AB = BC, а точка P лежит на биссектрисе угла B.
Докажите, что BD = 2PQ.
В выпуклом шестиугольнике ABCDEF диагонали AD, BE и CF равны. Пусть P – точка пересечения диагналей AD и CF, R – точка пересечения диагоналей BE и CF, Q – точка пересечения диагоналей AD и BE. Известно, что AP = PF, BR = CR и DQ = EQ. Докажите, что точки
A, B, C, D, E и F лежат на одной окружности.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 239]