ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1661]      



Задача 53534

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Медиана прямоугольного треугольника, проведённая к гипотенузе, разбивает его на два треугольника с периметрами m и n. Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 53628

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC к гипотенузе AB проведена высота CD. На отрезках CD и DA взяты точки E и F соответственно, причём
CE : CD = AF : AD.  Докажите, что прямые BE и CF перпендикулярны.

Прислать комментарий     Решение

Задача 53631

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если катеты треугольника равны a и b.

Прислать комментарий     Решение

Задача 53637

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике высота, проведённая к основанию, делится точкой пересечения высот пополам. Найдите углы этого треугольника.

Прислать комментарий     Решение

Задача 53675

Тема:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Высота треугольника ABC, опущенная на сторону BC, равна h, $ \angle$B = $ \beta$, $ \angle$C = $ \gamma$. Найдите остальные высоты этого треугольника.

Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1661]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .