ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 541]      



Задача 108035

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

Прислать комментарий     Решение

Задача 108451

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC из точки E , расположенной в середине катета BC , опущен перпендикуляр EL на гипотенузу AB . Найдите углы треугольника ABC , если AE = · EL и BC > AC .
Прислать комментарий     Решение


Задача 108954

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .
Прислать комментарий     Решение


Задача 110842

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Прислать комментарий     Решение

Задача 110858

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 541]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .