|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Прямоугольный лист бумаги ABCD согнули так, как показано на рисунке. Найдите отношение DK : AB, если C1 – середина AD. По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]
Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения): 1) 2, 3, 4; 2) 3, 4, 5; 3) 4, 5, 6; 4) 10, 15, 18; 5) 68, 119, 170.
Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|