ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



Задача 110167

Темы:   [ Правильный (равносторонний) треугольник ]
[ Средняя линия треугольника ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 7,8,9

В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.

Прислать комментарий     Решение

Задача 109007

Темы:   [ Системы точек ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6-
Классы: 8,9,10,11

На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.
Прислать комментарий     Решение


Задача 116628

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Против большей стороны лежит больший угол ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

Прислать комментарий     Решение

Задача 116194

Темы:   [ Подобные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 10,11

Bнутри треугольника ABC выбрана произвольная точка M. Докажите, что  MA + MB + MC ≤ max {AB + BC, BC + AC, AC + AB}.

Прислать комментарий     Решение

Задача 57541

 [Точка Торричелли]
Темы:   [ Экстремальные точки треугольника ]
[ Точка Торричелли ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6
Классы: 8,9,10

Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .