ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 181]      



Задача 54586

Темы:   [ Построение треугольников по различным элементам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Постройте треугольник по стороне, медиане, проведённой к этой стороне и медиане, проведённой к одной из двух других сторон.

Прислать комментарий     Решение


Задача 54957

Темы:   [ Медиана делит площадь пополам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что медианы треугольника разбивают его на шесть равновеликих треугольников.

Прислать комментарий     Решение


Задача 116500

Темы:   [ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10

Автор: Иванов С.

Дан треугольник ABC. Точки A1, B1 и C1 – середины сторон BC, AC и AB соответственно. На продолжении отрезка C1B1 отложен отрезок B1K по длине равный . Известно, AA1 = BC. Докажите, что AB = BK.

Прислать комментарий     Решение

Задача 53779

Темы:   [ Признаки подобия ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении  2 : 1,  считая от вершины. Докажите, что AK и CM – медианы треугольника.

Прислать комментарий     Решение

Задача 54589

Темы:   [ Построение треугольников по различным элементам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .