Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 243]
Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP.
Докажите, что P – точка пересечения высот треугольника ABC.
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.
Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают
окружность в точках E и F соответственно, D произвольная
точка на (меньшей) дуге AC, K – точка пересечения DF и
AB, L – точка пересечения DE и BC. Докажите, что
прямая KL проходит через ортоцентр треугольника ABC.
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. На отрезке A1C1 выбрали такие точки A2 и C2, что отрезок B1A2 делится высотой CC1 пополам и пересекает высоту AA1 в точке K, а отрезок B1C2
делится высотой AA1 пополам и пересекает высоту CC1 в точке L. Докажите, что KL || AC.
На сторонах AB, AC, BC равностороннего треугольника ABC, сторона которого равна 2, выбрали точки C1, B1, A1 соответственно.
Какое наибольшее значение может принимать сумма радиусов окружностей, вписанных в треугольники AB1C1, A1BC1, A1B1C.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 243]