Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 369]
|
|
|
Сложность: 3- Классы: 6,7,8
|
Петя написал на гранях кубика натуральные числа от 1 до
6. Вася кубика не видел, но утверждает, что
а) у этого кубика есть две соседние грани, на которых написаны
соседние числа;
б) таких пар соседних граней у кубика не меньше двух.
Прав ли он в обоих случаях? Почему?
|
[Обеды обезьянок]
|
|
Сложность: 3- Классы: 6,7
|
Обезьянки – Маша, Даша, Глаша и Наташа – съели на обед 16 мисочек манной каши. Каждой обезьянке что-то досталось. Глаша и Наташа вместе съели 9 порций. Маша съела больше Даши, больше Глаши и больше Наташи. Сколько мисочек каши досталось обезьянке Даше?
Найдутся ли такие три натуральных числа, что сумма каждых двух из них – степень тройки?
|
|
|
Сложность: 3 Классы: 10,11
|
У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 369]