Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 222]
|
|
Сложность: 5- Классы: 8,9,10
|
В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на n – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)
|
|
Сложность: 5- Классы: 8,9,10
|
Сумма n положительных чисел x1, x2, x3, ..., xn равна 1.
Пусть S – наибольшее из чисел
Найдите наименьшее возможное значение S. При каких значениях x1, x2, ..., xn оно достигается?
|
|
Сложность: 5- Классы: 9,10
|
Пусть 1 + x + x² + ... + xn–1 = F(x)G(x), где F и G – многочлены, коэффициенты которых – нули и единицы (n > 1).
Докажите, что один из многочленов F, G представим в виде (1 + x + x² + ... + xk–1)T(x), где T(x) – также многочлен с коэффициентами 0 и 1 (k > 1).
|
|
Сложность: 5- Классы: 9,10,11
|
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией.
Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 222]