ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 222]      



Задача 64768

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 8,9,10

В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на  n – 1  экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)

Прислать комментарий     Решение

Задача 73692

Темы:   [ Системы алгебраических неравенств ]
[ Принцип крайнего (прочее) ]
[ Системы алгебраических нелинейных уравнений ]
[ Средние величины ]
Сложность: 5-
Классы: 8,9,10

Автор: Ионин Ю.И.

Сумма n положительных чисел  x1, x2, x3, ..., xn  равна 1.
Пусть S – наибольшее из чисел  
Найдите наименьшее возможное значение S. При каких значениях  x1, x2, ..., xn  оно достигается?

Прислать комментарий     Решение

Задача 98355

Темы:   [ Свойства коэффициентов многочлена ]
[ Принцип крайнего (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Системы отрезков, прямых и окружностей ]
[ Геометрические интерпретации в алгебре ]
Сложность: 5-
Классы: 9,10

Пусть  1 + x + x² + ... + xn–1 = F(x)G(x),  где F и G – многочлены, коэффициенты которых – нули и единицы  (n > 1).
Докажите, что один из многочленов F, G представим в виде  (1 + x + x² + ... + xk–1)T(x),  где T(x) – также многочлен с коэффициентами 0 и 1  (k > 1).

Прислать комментарий     Решение

Задача 109800

Темы:   [ Связность и разложение на связные компоненты ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 5-
Классы: 9,10,11

В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на  k + 2  группы так, что никакие два города из одной группы не соединены авиалинией.

Прислать комментарий     Решение

Задача 64811

Темы:   [ Выпуклые многоугольники ]
[ Принцип крайнего (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10

Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .