ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите равенства:

а)  

б)  

Вниз   Решение


Внутри окружности расположен выпуклый четырехугольник, продолжения сторон которого пересекают ее в точках A1 , A2 , B1 , B2 , C1 , C2 , D1 и D2 960. Докажите, что если A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми A1A2 , B1B2 , C1C2 , D1D2 , можно вписать в окружность.

ВверхВниз   Решение


Автор: Фольклор

В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 116054

Тема:   [ Разрезания на параллелограммы ]
Сложность: 2+
Классы: 6,7

Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.).

Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

Прислать комментарий     Решение

Задача 64932

Тема:   [ Разрезания на параллелограммы ]
Сложность: 3-
Классы: 5,6

На клетчатом листе нарисован прямоугольник 6×7. Разрежьте его по линиям сетки на пять каких-нибудь квадратов.

Прислать комментарий     Решение

Задача 98556

Темы:   [ Разрезания на параллелограммы ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём  a < b.  Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b?

Прислать комментарий     Решение

Задача 66130

Тема:   [ Разрезания на параллелограммы ]
Сложность: 3+
Классы: 7,8

Внутри квадрата отмечена произвольная точка М. Можно ли этот квадрат разрезать не более чем на три прямоугольника, и сложить из них квадрат так, чтобы точка М стала его центром? (Разрезы не должны проходить через точку М.)

Прислать комментарий     Решение

Задача 76546

Темы:   [ Разрезания на параллелограммы ]
[ Четность и нечетность ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .